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The motion of a Chaplygin sledge [l] on an inclined plane is considered when sliding and rotational 

friction are present, together with random “white noise” perturbations produced by, for example, 

translational vibrations of the base. Stochastic equations of motion arc set up and the problem of their 

statistical analysis is considered. 

In the case when the plane is horizontal, and the friction and perturbations arc small, the analysis is 

carried out by an averaging method. All finite kinetic energy distributions of the sledge are found. It is 

shown that a limiting steady-state mode with a y-distribution is established. The motion of a skate 

(which is a special case of a Chaplygin sledge) on an inclined plane when there is no rotational friction 

is briefly considered. It is shown that when the sliding friction is small the skate will “on average” 

slowly slip downwards, i.e. the mathematical expectation of the coordinate changes slightly, whereas 

the “root mean square” slippage will be significant, i.e. the dispersion of the coordinate varies strongly. 

In the case of a Chaplygin sledge moving along an inclined plane with arbitrary coefficients of sliding 

and rotational friction the analysis is performed using the method of orthogonal expansions. Numerical 

results are presented. 

The deterministic version of the problem (i.e. when there are no random perturbations) has 
been investigated previously [l--5]. In the stochastic version it has been considered under the 
assumption [6] that the centre of gravity lies on a line passing through the blade and perpen- 
dicular to it, and stochastic equations of motion, linearized about the equilibrium position of 
the deterministic system, were set up and analysed. 

1. Consider the motion of a rigid body supported on a smooth inclined plane by a blade and 
two smooth legs, in a homogeneous gravitational field with acceleration g. 

We introduce a system of coordinates O{n fixed to the supporting plane, with the 051~ 
plane coinciding with the supporting plane and the 05 axis directed along the line of steepest 
inclination, and a system of coordinates Axyz, rigidly attached to the sledge, the AX axis 
directed along the blade and the Ay axis parallel to the supporting plane. Both systems of 
coordinates are right-handed. (Henceforth we use the notation of [5].) We introduce the 
following notation: a, p, 6 are the coordinates of the sledge centre of gravity G in the fixed 
system of coordinates, m is the mass of the sledge, p is the radius of inertia of the sledge about 
the axis Gz’ll AZ, r = d(a* +p”), and 8 is the angle of inclination of the supporting plane to the 
horizontal. 

One can take as generalized coordinates the coordinates c,rl of the sledge in the fixed system 
of coordinates O@J~ and the angle cp(modd2rr) of rotation of the sledge about the AZ IIO[ 
axis. We assume that the sledge cannot slip in a direction perpendicular to its plane. Then the 
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non-holonomic constraint equation has the form 

~~in~-~~os~=O 

We shall assume that the system is acted on by dissipative forces with Rayleigh dissipation 
function 

where h > 0 and 4 z 0 are the coefficients of viscous and rotational friction, together with 
an external perturbing force F(t) acting in the O@J plane, with components F, and F2 in the 
05~~ plane. 

It is convenient to rewrite the equations of motion using the quasicoordinate K 

v=q-prp, {.=q.cos(p, Q‘=q’sincp 

and the dimensionless quantities 

t* = I- &t, &X 
r 

rl p;=- 

P 2, p;=-&, a=;, b=; 

For simplicity we omit the asterisks and denote differentiation with respect to the “new” 
time coordinate by a dot. The canonical equations of motion then have the form 

QI’=Pl 

P; = -up,p2 -asinBsiny,-kiipi -k12p2 -(ausin~)~ +(eacoscp)F2 

p; =apF +sinBcoscp--ki2p1 -k,,p, +(&costp)I;; +(&sin$r)F2 

(1.1) 

When the function F(t) is known Eqs (1.1) form a closed system describing the motion of the 
sledge about the centre A. They need to be completed by the equations 

5’ =(bpi +P~)COSCP, q*=(bp, +p2)sinq 

co=-ap,sincp+p2coscp, ~~=ap1cos’p+p2sin’p 0.2) 

which govern the motion of the blade and centre of gravity G relative to the supporting plane 
@,;(l. The equation for K, K = pz separates from Eqs (1.1) and will not be considered below. 

2. Suppose that the external perturbing force vector F is a vector V = [VI, If,]“’ of indepen- 
dent normal white noise with constant two-by-two intensity matrices v= v,E, v, =const, 
E=diag(l, 1) (broad-band, homogeneous and isotropic in the perturbation space). In this 
case the equations of motion (1.1) form an Ito system of stochastic differential equations 
(SDEs) (see, e.g. [7]). These equations govern a time-homogeneous diffusion process on the 
manifold S’ xR’--the phase space of the stochastic non-holonomic Chaplygin system that is 
being considered. 

By a theorem of Khas’minskii [8, p. 1191 it follows that when ~E,,E,, f 0 the stochastic system 
(1.1) under consideration contains a limiting and steady-state (in the narrow sense) mode. To 
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prove this it is sufficient to take the sledge kinetic energy function (p,2 +p,2)/2 to be the 
Lyapunov function. 

Because Eqs (1.1) are separated from Eqs (1.2), systematic and fluctuating drift [9] of the 
variables 5, IJ, &, qlc is possible, i.e. the mathematical expectation and variances of these 
variables can increase without limit. 

Despite the fact that the diffusion of the SDEs under investigation is degenerate, these 
equations have strong solutions and strongly unique solutions, because all the coefficients in 
the equations are smooth functions of their variables, and the diffusion matrix (i.e. the matrix 
BvB” where B is the matrix in front of the white noise vector in the equations of motion) 
depends only on the sledge orientation and is positive and bounded. Moreover, the process 
governed by these SDEs is regular (i.e. there is no halting or discontinuity in the process), and 
the Hormander conditions which guarantee the smoothness of the transitional density in 
inverse variables are satisfied [lo]. 

The fundamental aim of the paper is a statistical analysis of the motion of a Chaplygin 
sledge. 

Suppose the supporting plane is horizontal (0 = 0), and that the friction and perturbations 
are small, i.e. the quantities k, (i, j= 1, 2) and E* are of the first order of smallness. To apply 
the averaging method effectively the variables cp, pl, p2 are replaced by new variables [S] 
w(mod27c), Z, w, using the formulae 

w=cp+ tarcsin 4&, WI =&In% 
(2.1) 

Formally, in order to reduce the equations of motion to a standard form and use the 
averaging method, one should introduce a slow variable w, -It to replace the variable w,. 
However, we shall not do so because the equation for this variable will not be considered. 

In unperturbed motion Z, w, w; = 1 are constant. 
The equations of motion in the new variables I, w, w, are convenient for the application of 

the averaging method and for brevity will not be given here. 
After the averaging procedure for the diffusion equations in standard form [ll-131 one must 

separately average the drift vector and diffusion matrix. This essentially reduces to averaging 
the coefficients of the product operator of the Markov process described by the SDEs of 
motion in new (slow) variables. The averaged system describes with sufficient accuracy the 
behaviour of the exact system over a time interval of order l/e., E, = max(k,, &*(i, j= 1, 2)). 
More precisely, this means that the finite distributions of the state vector of the original system 
can, as E. + 0, be approximated in any compact region of the phase space, uniformly over a 
time interval of length O(~/E.), by finite state vector distributions of the averaged system. 

In the present case the system of Ito SDEs has the form (using the previous notation for 
quantities that are now averaged) 

I.=-k2,Z+voa2/(21)+V,, w’=V211 (2.2) 

It is convenient to replace Z by introducing the variable J = 1’12 proportional to the kinetic 
energy of the Chaplygin sledge. The stochastic equation for the variable J 

J. = -2k,,J + v,(l +a 2, / 2 + fiV, 

can be investigated independently. 

(2.3) 

Note that the averaged system of stochastic equations (2.2) does not, strictly speaking, allow 
one to consider the equation for J separately, because the initial values J&J, w(t,), wl(t,) are, 
in general, dependent. However, J(t) constitutes a diffusive process, and distributions of the 
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quantity J, as one of the components of the state vector, are the same as in the stochastic 
system (2.3). 

For Eq. (2.3) the analysis problem is completely solvable because the corresponding 
Pugachev equations [7] for the ~-dimensional characteristic functions g,(h,, . . . , h,;t,, . . . , t,) 
are linear and of the first order, and are integrable by the standard method. We write these 
equations 

h = A, (-Zk,, + iv,-&, ) agn 
af, n ~+liv,il+a2)?bg,, i2 =-I 

n 2 
gn(hf,*..,hn;t[ t..., tn_l,fn_,)=g,_l(ht,...,h,_*,h,_, +h,;ff ,... J,_,) (2.4) 

n = 2,3,...; s,&Q=&JU 

Here g&L) is the characteristic function of the initial value J(r,) representing the random 
quantity, independent of the values of the white noise V(I) when t > r,, Solutions of Eqs (2.4) 
have the form 

g,(h;t)=go(hexp[-2k2~(r-~~)]Y-‘(h,t-t,))Y-”+a2”2 th,t-t,) 

Y (h, z) = 1 - iv&l - exp[-2kz2z]) /(2k,, ) 

g,(h, ,*.., 3Ln;ti 1’.., f,)=gR_,(h*,...*hn_2,hn_, + 

+h,exp[-2kz2(t,, -t,_l)]ul-‘(h,,t, -t,_l);t,,...tt._,)Y-‘1’a2”2(h,,?” -f,,_,) 

(2.5) 

From this it follows that over the course of time a steady fluctuation mode is established with 
the one-dimensional characteristic function 

g,, @I = (1 - iv& / W22 NW 
(l+oZ1/2 

which corresponds to the y-distribution. 

Note that holonomic systems perturbed by white noise often have an energy distribution that is a 

special case of the ~-distribution: the exponential or ~2~distriblltion with IZ degrees of freedom. For 

example, for the stochastic Euler-Poinsot equation [14] the steady-state kinetic energy distribution of the 

body has a x2-distribution with three degrees of freedom. 

From Eqs (2.3) (or 2.2)) we obtain a system of linear ordinary differential equations for the 
moments 1-1, = MY’ (where N is the mathematical expectation operator) 

CL, = n[-4k+, + v&z2 + 2n - l)p,_, I i 2 (2.6) 

The solution is easily obtained. Here we shall only write out the expression for pi(t) and for 
the steady-state moments 

u1 (t) = ut ~~~~exp(-2k*~~)~ ~~(1 +a2X1 - exp(-2k~~~f)~(4k~~) 

&It =[vO /(4k22)]n(a2 +2n-I)@* +2n-3)...(a2 +I) 

It is clear from (2.2) that there is no drift in the stochastic equation for the angular variable 
w, i.e. the variable w only undergoes diffusion 

where IV,(z) is the standard one-dimensional Wiener process 
In the special case a= 0 {where the centre of gravity lies 

cv2 = w;>* 
on the line passing through the 
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blade and perpendicular to the blade) the exact equations of motion (1.1) have the form 

0’ =Pl, Pi = -k, IPI - k,,p, 

pi = -k,,p, - k22p2 + V’, V’ = V, coscp+ V2 sinrp (2.7) 

Because the perturbations are homogeneous and isotropic the diffusion matrix of the SDE 
(2.7) has the form diag(O, 0, v,). Hence all the distributions of the state vector [cp, pl, p,]” are 
the same as for the linear system (2.7), where V’ is scalar normal white noise with constant 
intensity v,. 

All finite distributions of the state vector [cp, pl, p,]” can be obtained from well-known 
formulae [7]. We merely remark that in the limit when t + 00 the distributions are normal in 
the variables p1 and pz, and uniform (along the circle) in the angular variable cp. 

3. In the case of a skate (a= p= 0) on an inclined plane and when there is no rotational 
friction (& = 0) the stochastic equations of motion (1.1) have the form 

(3.1) 

Henceforth, we shall restrict ourselves, for simplicity, to the case when the initial conditions 
for cp and pl are deterministic: cp(tJ = ‘po, pl(to) = plo. Then the last three equations of (3.1) are 
linear, and the evolution of the mathematical expectation MC and variance 05 of the 
coordinate 5 can be found using well-known formulae [7]. We shall write out expressions for 
MC and 05 assuming that a periodic regime has been established in the variable p2 

MS= 
k22 sin 8 

P:O + k;z 
u(t)+c,, Dt= ’ 

P:O + kh 
u(t) + c-2 

1 
u(r)++- 

1 

4PlO 
sin 29 - - 

4k22 
cos 2(p, cp = plot + ‘PO 

From this it follows 
period t = 27rlp,, of the 

Ci = const (i = 1,2) 

that the ratio of the increments of 
angle cp is equal to 

(DC), / (MS), = v 1 (k22 sin 0) 

05 and MS over one oscillation 

(3.2) 

It is clear that for small kp the skate will “on average” slide downwards very slowly, whereas 
the “mean square” sliding will be substantial. This result can be considered to be a stochastic 
analogue of a known effect in the deterministic problem: when there are no perturbations and 
friction the skate never slides downwards (so long as q’(to) f 0). 

4. To analyse the motion of a stochastic Chaplygin sledge on an inclined plane with arbitrary 
coefficients of sliding and rotation friction we shall use an approximate method [15]. Following 
it, we reduce the problem of finding a one-dimensional density distribution fit: cp, pl, 

pz) : R’ x S x R* -+ R for solutions of the SDE (1.1) to the problem of finding expansion coef- 
ficients for this density in the following series 

f - (2~)~~ (yiy2 >% exp[-p: / (2Yi ) - P22 / GY2 )I X 

X 5 H;(YI,PI)Hj(Y21P2) f$+fi fi&sinnrp+b,j,cosncp 
[ ( )I (&1=1) i,j=O ll=l (4.1) 

Here yl, y2 are positive constants chosen for convenience, and Hi are Hermite polynomials. 
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The unknown coefficients u,,(t), b;,(t), d,(z) are governed by the formulae 

aiin =IMH,(Y1,~,)~j~Y~,Pz)JZSinncP 

bGn =EAH;(Y,,P~)Hi(Y2,P2)~CoSn’P 

d, =Mifj(y~*P,wj(Y2~P2) 

and satisfy the foIlowing denumerable infinite system of ordinary differential equations with 
appropriate initial conditions 

a:. 
‘Jn 

= -(k,,i + kz2 j)a,, + nfi(mbi+,,j,n + Gbi-,,j,n) - 

-a~(~~-*~)-~) Qi,j_l,n +~KW(l-$)ai-*,j-t,n +iJjt-lai,j+ldf + 

+I-sin0 
2 %,j-l.f4 + ai,j-i,n-l I- a - b,j,n+l 1 

I 

- 

412 
I- 

i:(fi%l,j-l,n + JFk4.j+l.n > + 
J- 

I ‘e(Ji+lai+l,j_l,n f Gai-,,j_f,n > + 

4jn = -(k, Ii + k22j)bv,, -n~(~ai~,,j,~ + Gai_i,j+, )- (4.2) 

+%l.j,n-1 I+ 

J 

2(4.j-I.rt-r +h.j-t,n+t 1 - 

+ JIG%-,,j+l.n I+ (dGbi+, j-1 n + abi-l,j-1.n 1 + I 1 1 

Equations for djj are obtained from the equations for bij, when n = 0 if one puts x = l/4(2). 
Equations for the mathematical expectations in O&t coordinates of the blade A and of the 
centre of gravity G follow from (1.2) 

0fE.Y = bmho, +JT?~%,~~ Will' = b~~a,~* +$?%xI 

(MEG)' = --qlQG0~ +&?%I1, (WC)’ =awbl +J;y’;zII%~a~ll 

Restricting ourselves in (4.2) to i, ), IZ such that 0 pi 6 N,, 0~ is N,, 0s~~ sN3 
(the rectangular summation method) and solving the resulting system of linear differential 
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equations on (say) a computer, we obtain an approximate expression for the density distri- 
bution, and also approximate values for the moments of the process [cp, pl, pJ. 

In numerical experiments the values of the following parameters were fixed: p = 0.1; r = 1; 
g= 9.8; v, = 1; sine= 0.1. The values of the remaining parameters were varied, and we 
consider three cases: (1) a = 0.1; h = 2.4; /z, = 2; (2) a = 0; h = 4; h, = 2; (3) a = 0; h = 4; 4 = 0.01. 

When there are no random perturbations the final motion of the sledge in the first case is 
steady descent along some straight line with constant velocity (cp = const, pl = 0, p2 = const), in 
the second case a position of stable equilibrium (‘p = 3x/2, p1 = p2 = 0), and in the third case a 
self-oscillating mode (which corresponds to a limit cycle in the phase space {cp, p,, p2}). 

The initial values of cp, pr, p2 were chosen to be statistically independent. The distribution of the 
pj (j = 1, 2) at t = 0 was normal with zero mathematical expectation and variance yj (j = 1, 2) while the 
distribution of the angle cp at t = 0 in each of the three cases was as follows: 

1. fo(‘p)=[1+cos(cp-~/2)11(2~), 2. fo(cp)=[1+cos(cp-5x./4~1/~2~), 

3. fo(cp)=l/W). 

System (4.2) with N, = N2 = 32, N, = 6 was integrated by a fourth-order Runge-Kutta method with 

step length 10e3 over the time interval [0, 103]. 
The parameters y, were chosen to be approximately equal to the steady-state values Mpf and had the 

following numerical values in the cases under consideration: (1) y1 = 0.05; yZ = 0.7; (2) y1 = 0.0% yz = 0.4; 

and (3) yt = 1.56; y2 = 0.41. Here all the real parts of the eigenvalues of the matrix of the linear system 
(4.2) were negative, and as N,, N,, N, increased the Parseval series 

converged fairly rapidly over the time interval [0, lOOO] and when NINz 3 32, N, 2 6 it remained constant 
to within 10” This ensured the accuracy of the method. 

The numerical results are shown in Figs l-4. The first set of parameter values corresponds to 
curve 1 in Fig. 1, the second to curve 2 and the third to Figs 2-4. 

Figure 1 shows curves of [Mt(t), Mq(t)] when t E [0, lOOO] and the initial values are zero. 
They illustrate the “average” track of the skate A on the supporting plane. Here the evolution 
of the one-dimensional density of the angle cp 

is also shown. The dashed curves correspond to the initial distribution, and the solid curves to 
the steady-state distribution. It is clear that the maximum probability shifts from 7r/2 to 
(p* = 5.65 in th e irs case, and from 51r/4 to 3~12 in the second. f t 

It follows from the form of curves 2 in Fig. 1 that in the second case the sledge will on 
average slide slowly downwards along the line of steepest descent (systematic drift). Here the 
skate will oscillate randomly near the cp = 3x/2 position (a stable equilibrium position in the 
deterministic problem). 

Figure 2 shows the projection of the limit cycle on the pl, p2 plane when there are no 
perturbations, and Fig. 3 shows the steady-state one-dimensional density f(p,, pJ. It is 
remarkable that the steady-state one-dimensional density for the variable pz is essentially non- 
Gaussian, which is shown in Fig. 4 where the dashed curve corresponds to the normal 
distribution with the same variance as p2, and the solid curve corresponds to f(p,). At the 
same time the steady-state one-dimensional distribution density f(p,) is practically indistin- 
guishable from the corresponding Gaussian distribution. 
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Fig. 2. 

Fig. 3. Fig. 4. 
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